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Abstract

In this paper the variance in the residuals of the market model or downside market model is
time-varying and has an association with the conditional volatility of the market. This paper
empirically models conditional volatility exposures for log-daily returns on assets listed on
the Warsaw Stock Exchange. For this purpose, a Factor-ARCH type process is adopted
where the exposure of asset volatility to market portfolio (WIG) volatility is estimated in the
variance equation. All analyses are made in the downside and standard asset pricing
frameworks. This article provides evidence that the conditional volatility of returns on
assets (portfolios) has a statistically significant contemporaneous association with market
portfolio volatility. The downside volatility beta is statistically higher than its classical
equivalent. There is evidence of a significant relationship between classical systematic risk
and the average returns on individual assets and portfolios. The results of cross-sectional
regressions show that both volatility betas are also priced.
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1. Introduction

The Capital Asset Pricing Model (CAPM) continues to be one of the basic tools describing
the relationship between a rate of return and risk. One of the assumptions of classical
finance, to which the aforementioned theory belongs, is the assumption of variance as the
key measure of risk. Investors treat very high and very low returns as equally undesirable. It
is, however, widely argued that investors usually do not perceive returns above a threshold
as bad, giving rise to the downside risk framework. Therefore, given the evidence of
asymmetry in return distributions, the use of a classical pricing model to explain volatility
of returns, and thereby, to treat the beta as a measure of systematic risk, is questionable.
Taking the foregoing into account, an alternative measure of systematic risk-—the downside
beta——is considered here (Galagedera, 2007). In this research three measures of the downside
beta widely discussed in the literature are considered. In the CAPM with downside beta, the
risk premium is always positive and in many cases statistically significant. Many studies
showed that downside measures particularly downside beta is a better risk measure than
CAPM beta in explaining high average stock returns (Post, van Vliet, 2006). Many studies
of emerging markets reveal that different downside measures are better for explaining
variability in the cross-section of returns than classical measures (Estrada, 2002, 2007).
Studies using individual securities traded on the London Stock Exchange, Paris Stock
Exchange or in the Asia Pacific region also demonstrate that downside risk measures explain
a greater proportion of securities returns than the beta coefficient (Pedersen, Hwang, 2007;
Artavanis et. al., 2010, Alles, Murray, 2013). They found evidence that downside beta is
priced by investors. It should be pointed out that bearing a downside risk is not simply
compensation for the CAPM beta risk or for the risk expressed in other economic measures
or categories, such as co-skewness, co-kurtosis, liquidity or capitalization (Ang. et al., 2006),
(Markowski, 2013).

The standard versions of the CAPM model are often insufficient for describing the
relationship between risk and return. The foregoing does not result from the erroneous
specification of the model, but from the ineffectiveness of the market portfolio’s
approximation, or from erroneous or insufficient market model specification. In addition,
yet another aspect of risk is brought up here. Residual variances in both classical and
downside market model equations are time-varying and have an association with the
conditional volatility of the market as a whole. The reason for this is the relationship between
price volatility and turbulence in financial markets. Investors may be more perceptive to
news in periods of relatively high market volatility, and such sentiments may result in price
volatility of individual assets increasing (Veronesi, 1999). In other words, it may hypothesize
that market volatility provides additional information, which in return may result in the
volatility of returns on securities changing. In addition, market volatility affects the volatility
of stock returns contemporaneously. The nature of the processes typical for financial
markets, such as irregularity of news about companies or macroeconomic variables,
suspension of trading, or correlations between the dynamics of various instruments causes
volatility to be a time-varying process, whose prominent feature is a clustering of variances.
Hence, stock return volatility should be modelled as a conditional volatility process that is a
function of the conditional volatility of market portfolio returns. Such an approach provides
anew measure of sensitivity to market volatility, referred to as the conditional volatility beta
(Caietal., 2006). This measure is determined using the equation for the conditional volatility
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of stock returns. It is therefore appropriate to examine the statistical relevance and co-
existence of a return beta and return volatility beta. Studies conducted using conditional
volatility series show that the estimated volatility betas are positive and significant. Cai et.
al. (2006) suggest that for daily returns, systematic volatility exposures are significant
variables in the cross-sectional regression of market returns. Other analyses reveal that the
volatility beta is not priced (Li and Galagedera, 2008).

Previous attempts at modelling equity market volatility conditionally refer to the
association between country-specific exposure and that of the world market. The results
were compared in the developed and emerging capital markets. The contribution of this
paper is that this methodology was used to search the co-movement of company-specific
conditional volatility and that of the Polish market. It is pointed out that the level of return
exposure and volatility exposure in the conventional and downside frameworks depends on
the size of the company or belonging to a particular sector of the economy and in the
consequence that the risk is priced.

The joint estimation of beta and conditional volatility beta requires that ARCH type
models be applied, and in particular, the Factor-ARCH type models. They are used to co-
estimate the classical or downside beta and the conditional volatility beta. They also
demonstrate that the multidimensional models of conditional volatility may be significantly
simplified through the determination of the common source of volatility, which in this case
is the market (Bollerslev, Engel, 1993). Therefore, in order to estimate the level of exposure of
conditional volatility for a given stock to the conditional volatility of the market, the
conditional volatility of the market (stock exchange) portfolio is regarded as the exogenous
variable in the variance equation. This volatility is estimated first using a GARCH model.

The empirical analysis of volatility exposure is carried out under the conditions of the
Polish capital market. The analysis covers single companies listed on the WSE and equally
weighted portfolios based on their stocks. This paper aims at estimating return betas and
conditional volatility betas, with special consideration given to the downside framework in
risk measurement and to the verification of whether these variables have an effect on the
pricing of capital assets.

2. Methodology

A downside risk framework in the pricing of capital assets is based on the lower partial
moments (Galagedera 2009). The application of such measures means that investors perceive
a set of investment opportunities not through the prism of a mean-variance (m-s2)
combination, but as a relationship between the mean and the lower partial moment (m-lpm).
The key term for this type of measure is the threshold. The lower partial moment may be
formulated as follows:

1 T
LMPk= — lpm* | 1
i T—l ; p it ()
where:
0 dlaR,>1
lmp, = ’ , @

R-ldla R, <1
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where: R, is the return in time ¢ for company I, T'is the length of the time series, and 1 is the
threshold or return assumed by an investor. The downside betas may be expressed as follows
(Price et al. 1982):
CLMP?
Bi=—— ©)
LPM?
where CLMP? means the asymmetric mixed lower partial moment squared for company i
calculated as follows (Rutkowska-Ziarko 2013):

T
CLMP?= L > (R - Dipm ()
T-1 =
where:
0 dlaR, >1
Imp,, = @)

R -ldla R, <1
and R, is the market portfolio return in time ¢.
In the theory, there have been many varieties of downside beta 5° distinguished with
different formulas and reference points 1 (Estrada 2002, 2007). Bawa and Lindenberg, as well
as Hogan and Waren, developed the CAPM model in which the measure of systematic risk
is the downside beta (BL-beta) expressed as follows (Hogan and Warren, 1974), (Bawa and
Lindenberg, 1977), (Chow, Denning, 1994):
_ E[(R, - R)min(R,, - R;0)]
E[min(R,, - Rf; 0)]?
where R, is the risk-free rate. When there is no appropriate risk-free rate, zero may be
considered the threshold. Then, equation (6) becomes (Li, Galagedera, 2008):
E[R, min(R,;0)]
" ElminR,,; O

6)

ﬁ BL
i

7)

M

The downside beta B” is estimated in the following mean equation':
R, = pPmin(R, ,0)+¢, (8)
where & ~N(0,0%).

The variance equation in the ARCH model with the exogenous variable is then given by
(Cai et al., 2006):
azit =% + yilgzi,t-l-'— ﬁDiv UZMt ’ (9)

where 0%, is the conditional variance of a given sector index , &2Mt is the conditional variance
of the market portfolio, and ” is the conditional volatility beta. For the classical market
model, the estimated equations are as follows:
— ~ 2
R,=a+BR, +E&, vxihere §,~N(0,0°) (10)
2 — 2 2
0% =V + yilg i,t-1+ ﬁiva Mt (11)

! Where the constant is included in the mean equation R, = a? + B (min(R,;0)) + &, the downside beta is
calculated according to the following formula: B” = B4+« E[min(R,,;0)l/E[min(R,;0)]* (Galagedera, 2007).
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The conditional volatility betas measure the response of contemporaneous co-movements in
a given stock, and the volatility of market index returns. Low (high) values of this measure
indicate that the volatility of a given stock is less (more) receptive to movements in market
index volatility. These measures are estimated using the two-step maximum likelihood
method (MLM). The first step involves determining the conditional variance of a stock
market index using the GARCH(1.1) model with a constant. The second step consists in
estimating the conditional volatility of stocks, where the main equation is the market model
(equation 8 and 10), and the variance equation (equations 9 and 11) includes the market
index conditional variance estimated in the first step.

3. Data

The dataset comprises a time series of log-daily returns on companies listed on the WSE2. The
sample period covers the years from 2005 to 2014 and includes 2,502 observations. The analysis
comprises all the companies listed on the WSE in the aforementioned period for at least 8
years. Based on the aforementioned assumptions, the analysis covers 195 companies, including
49 large, 55 medium and 91 small companies. The names of the companies are given using a
three-letter abbreviation form in accordance with their naming adopted on the WSE. The
WIG index is used as the market portfolio approximation. Figure 1 presents daily returns on
the WIG index. This illustrates series of periods of the increased and decreased variance of
returns on the WIG index, which means that the variance clustering effect is present. The
theories explaining the reasons for such a phenomenon, as referred to in the introduction, are
associated with the inflow of information to the market. Investors base their decisions on
actual information, which is a key factor that determines their choices. The inflow of
information is very often irregular, serial, and its impact on the market pricing of given assets
varies. Such situations result in periods of increased and decreased price volatility.

Figure 1. Daily Return from WIG Index for 2005-2014
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Source: Author’s calculations

? The closing prices of shares are taken from the WSE quotation database available at www.gpw.pl.
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The clustering of variances may primarily be observed in periods of strong increases and, in
particular, decreases in stock prices, which result from market distortions caused by relevant
news. Such news causes changes in prices and leads to an increase in their volatility. Such an
event took place at the end of 2008 with the start of the global crisis. The above arguments
fully justify the empirical application of the ARCH models.

4, Results

4.1. Estimation of Risk Factors

The conventional betas and conditional volatility betas in the context of total and downside risk
and the corresponding t-statistics are estimated according to equations 8 to 11. The summary
results for analysed individual assets quoted on the WSE are reported in Table A1 in the Appendix.
The results demonstrate that in the majority of cases there is a systematic and contemporaneous
relationship between the conditional volatility of stock returns and the conditional volatility of
the market. The conventional betas both classical and downside are positive and statistically
significant (significance level of 1%). The only exception is WST. Approximately 90% of stocks
have positive, both classical and downside, conditional volatility betas, and approximately 75% of
these are statistically significant (significance level of at least 10%).

It should be noted that at the same level of systematic risk expressed by 8,and °,, companies
may vary considerably in terms of conditional volatility exposure. In addition, differences in
the individual pairs of measures in the whole sample were confirmed, due to the absence of a
normal distribution of such measures, through two non-parametric tests, namely the Wilcoxon
rank-sum test and the signed-rank test. The test results indicate that there is no relationship
between the two types of beta, either in the classical or downside frameworks. In addition,
there is no evidence of any significant correlation between these two types of measure. The
Pearson Correlation Coeflicient for the classical measures is (-0.03), and for the downside
measures 0.12. The analyses confirm, therefore, that information provided by conditional
volatility betas, when assessing the market risk of a given stock, is unconventional.

Table 1 reports the summary distribution statistics for all types of beta. The graphical
presentation is provided in Figure 2. The estimated volatility betas are on average higher
than the conventional betas. However, it should be added that the downside betas of both
types are for the majority of companies on average higher than the betas determined in the
classical framework. The foregoing suggests that the downside volatility betas indicate that
the companies are more receptive to the contemporaneous volatility of the market than
demonstrated by the classical volatility betas. In addition, the volatility beta distributions
are characterized by higher diversity, skewness and kurtosis than the conventional betas,
which results in higher deviations of such distributions from the normal distribution. This
results from outliers being present in the volatility beta population. Another issue, which is
not included in this analysis, is the stability of volatility betas in the periods of various
market portfolio conditional volatility levels. As demonstrated by the results obtained by Li
and Galagedera (2008), the higher the value of the conditional volatility of the market, the
lower the values of volatility betas.
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Table 1. Descriptive Statistics of Daily Return and Classical and Downside Beta Coefficients

Coefficient Mean Median Min Max S.D. Skewness| Kurtosis | ]-B test
B, 0.664 0.615 0.143 1.508 0.262 0.757 0.254 19.194
B, 0.935 0.894 -1.370 5.531 1.021 1.377 4.338 | 214.513
ﬂD, 0.741 0.696 0.203 1.522 0.266 0.685 0174 15.501
B, 1117 1.021 -1.329 5.391 1.085 1.210 3.284 | 135181
I_li 0.016 0.017 -0.160 0.155 0.053 -0.222 0.331 2.487

Note: B, B, . classical return beta and conditional volatility beta; °, °, . downside return beta and

conditional volatility beta, 131 - mean daily return.
Source: Author’s calculations

Figure 2. Box Plot of Classical and 6
Downside Return and Volatility 5 x g
Beta Coefficients 4 * 8
3 8 ’
, T o Median
) 8 Jj ) . O 25%-75%
% ] % il Range of
0 nonoutliers
-1 < = © Qutliers
-2 - - * Extreme
Source: Author’s calculations Beta Betaiv BetaD BetaivD

As far as the size of a company is concerned, the volatility betas display greater variations
than the conventional betas. The highest average values of these measures are observed for
medium companies (1.127 and 1.265). The foregoing is presented in Table 2 and Fig. 3. The
return betas are the highest for large companies and the lowest for small enterprises. These
values correspond to the average returns, which are 0.032% and 0.001%, respectively for
large and small companies. To sum up, stocks with average capitalization, as opposed to
stocks of marginal-size companies, with a relative low level of response to changes in stock
exchange trends (conventional beta) are highly perceptive to movements in the conditional
volatility of the market (volatility beta).

Table 2. Mean Daily Return and Classical and Downside Beta Coefficients in Regard to Size of Company

Coef- Large Medium Small

ficient | Median Min Max Median Min Max Median Min Max
ﬁi 0.775 0.180 1.508 0.648 0.21 1.277 0.613 0.143 1.280
ﬁiv 0.778 -0.410 1.833 1127 -1.309 5.531 0.903 -1.370 5174

/SDZ 0.796 0.203 1.522 0.731 0.225 1.446 0.717 0.325 1.489

[)’Div 1.087 -0.341 2.601 1.265 -1.329 4920 1.044 -1.301 5.391

R 0.032 -0.046 0.122 0.026 -0.068 0123 0.001 -0.160 0.155

i

Note: B, B, . classical return beta and conditional volatility beta; g°, °, , downside return beta and

conditional volatility beta, 1_2, - mean daily return.
Source: Author’s calculations
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Figure 3. Plot of Classical and Downside Return and Volatility Beta Coefficients in Regard to Size
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Source: Author’s calculations

In the end, the similarity between conditional volatility of industries and sectors is analysed.
For this purpose, Table 3 reports estimated betas and volatility betas for various branches of
the economy. The downside betas for all sectors, excluding the banking sector, are on average
higher than the classical betas. In general, companies operating in service sectors are
characterized by the lowest return risk and conditional volatility exposure.

Table 3. Mean Daily Return and Classical and Downside Beta Coefficients in Regard to Sector

Finance Industry Service
Coef- ) ) Fuel and .
ficent | Banks |Developer Financial | oo mical primar Heavwyin"| rade |IT, media| E
; y rade , media| Energy
services products dustry
B, 0.921 0.967 0.805 0.583 1110 0.657 0.591 0.577 0.487

ﬁiv 0.707 0.715 1.515 1.532 0.997 0.791 0.928 0.789 0.663
/SDi 0.911 1.077 0.924 0.658 1127 0.733 0.670 0.652 0.539
B 1.272 1.056 1.602 1.688 1.470 0.965 1.043 0.927 0.789

iv

R 0.030 0.007 0.022 0.046 0.010 0.017 0.004 0.001 0.025

i

Note: B, B, . classical return beta and conditional volatility beta; g°, °, , downside return beta and

conditional volatility beta, l_{ - mean daily return.
Source: Author’s calculations

The fuel sector is the most perceptive, in the general and downside framework, to fluctuations
in market trends. This sector also has high volatility betas. Another figure of interest is the
chemical sector, where on average the sensitivity to index movements is low, but the response
to conditional volatility exposure is strong. The aforementioned analysis may give indications
that there are common sector-specific information factors in the Polish capital market.
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4.2. Cross-Sectional Analysis, Risk Pricing

In light of the pricing of capital assets, it is appropriate to examine the relevance of a
systematic risk premium. The analysed conventional betas and conditional volatility betas
are risk sources in the expanded versions of the CAPM model. The application of downside
measures falling within an asymmetric risk measure group means that the proposed versions
of the model may be considered an alternative to the three-factor and four-factor CAPM
models (Kraus and Litzenberger, 1976). These models use such measures as skewness, co-
skewness and co-kurtosis. The equations subject to cross-sectional regression analysis are as
follows:

R=A+AB.+ AB +AD+e, (12)
R=A+AB+ AB +¢, (13)
R=A+ABP+ AB° +A.D+e, (14)
R=A+ABP+ AB° +e¢, 15)

where R means the average return on asset i. The model also takes into consideration the size
of a company and includes the dichotomous variable D, whose value equals one for large
companies and zero for other companies. Table 4 reports the estimated results of equations
(12 to 15) for individual companies.

Table 4. Cross-sectional Analysis of Expected Returns and the Betas for Individual Assets

BEEEYEEEN
Model: R =A;+A B+ A8 +AD+¢
Estimate -0.0179¢ 0.0236¢ 0.0136° 0.0203° 0.094 7.698
t-value -1.672 1.676 3.787 2.326 (0.000)
Model: R, =A,+ A8+ AB, +¢
Estimate -0.0174 0.0318° 0.0130° — 0.073 8.642
t-value -1.621 2.247 3.562 — (0.000)
Model: R, =A,+A,B°+ A,f° +A.D +¢
Estimate -0.0075 0.0067 0.01172 0.0209° 6.115
t-value -0.660 0.451 3.394 2.433 0073 (0.000)
Model: R, =A,+ AP+ A B° +¢
Estimate -0.0051 0.0109 0.01142 — 6.057
t-value -0.446 0.769 3.279 - 0050 (0.003)
Note:  B,, B, . classical return beta and conditional volatility beta; g°, °, , downside return beta and condi-

tional volatility beta, I_Z‘ - mean daily returnn for asset i; D,, dummy variable whose valueequals one
for large companies and zero for other companies; ¢, - random variable; a, b, c indicates signifi-
cance respectively at the 1%, 5%, 10% level.

Source: Author’s calculations

The results demonstrate that the statistical significance of a risk premium related to the
overall situation in the market is 10%. The volatility exposure, both in the classical and
downside framework, is priced at the significance level of 1%. These risk premiums are
positive and higher in the classical framework. In addition, investors are rewarded for
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investments in large companies, which means that the company’s size effect is present. The
equations explain between 5% and 9.4% of the volatility of the average returns on companies.
It seems that the estimates of the conventional conditional volatility beta are significant,
according to results received from empirical investigations in emerging and developed
markets (Cai et. al.,, 2006). As distinct from other studies mentioned here that use country
indices (Li, Galagedera, 2008), these results provide strong empirical evidence that the co-
movement of asset-specific conditional volatility (conditional volatility beta) and that of the
market may be a factor of asset pricing. Furthermore, what is also important for portfolio
theory, volatility exposure is equally valuable risk measure as return exposure.

It has been decided that the pricing for individual sources of risk be analysed for
investments aggregated in portfolios. For that purpose, when ranking companies in view of
a given risk measure and average rate of return, there have been 20 equally weighted
portfolios constructed that comprise 10 stocks each, except for the last portfolio, which is
based on 5 companies with the highest values of a given measure. The average returns have
been made dependent on individual measures and on the pair of conventional and volatility
betas. The results are reported in Table 5 (see also Table Al in the Appendix).

Table 5. Cross-sectional Analysis of Expected Returns and Betas for Equally Weighted Portfolios

. B F-statistic
/\0 )Ll )Lz Adjusted R? (p-value)
Model: I_li =A,+AB +¢, Portfolios sorted by 3,
Estimate -0.0059 0.0331° - 17101
0.458
t-value -1.009 4135 - (0.000)
Model: l_li =A,+AB, +¢& Portfolios sorted by f3,,
Estimate 0.0035 0.0136° - 10.947
0.344
t-value 0.551 3.309 - (0.004)
Model: Ri =X, +ABP+¢e Portfolios sorted by B,”
Estimate 0.0023 0.0188 - 2.066
0.053
t-value 0.251 1.437 - (0.167)
Model: I_li = /\O + /11/3,.‘,[) + €, Portfolios sorted by ﬂiVD
Estimate 0.0033 0.0112° - 10.840
0.341
t-value 0.571 3.292 - (0.004)
Model: I_Qi =A,+AB.+ LB, +e Portfolios sorted by Rl.
Estimate -0.2046° 0.3334° 0.0557° 0388 7.044
t-value -2.711 2.988 2.271 ‘ (0.006)
Model: 1_2!. =A,+ABP+ LB +e Portfolios sorted by 1_21.
Estimate -0.1533¢ 0.2299¢ 0.0665° 0333 5.742
t-value -1.809 2.048 2.701 A (0.012)

Note:  B,, B, . classical return beta and conditional volatility beta; g, °, , downside return beta and condi-
tional volatility beta, I_QX. - mean daily returnn for asset i; D,, dummy variable whose valueequals one
for large companies and zero for other companies; ¢, - random variable; a, b, c indicates signifi-
cance respectively at the 1%, 5%, 10% level.

Source: Author’s calculations
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The aggregation of individual stocks in portfolios indicates that the role of systematic risk
measures in the pricing of securities is significant. Except for the downside betas, other risk
factors determine the average returns at the significance level of 1%. The highest risk
premium is obtained in the model with the classical beta (0.0331). This model explains the
average returns at the level of 45.8%. The portfolios ranked according to conditional volatility
betas are characterized by a systematic increase in the average returns, giving the risk
premiums respectively of 0.0136 and 0.0112. The pricing models using these betas explain
the returns of 34%. The last two models of the expanded CAPM versions are estimated for
the portfolios sorted according to the returns. The results indicate that both the classical risk
measures and the volatility exposure measures are factors that affect returns on assets. The
models describing the analysed relationships in the context of a downside risk explain asset
pricing in the Polish capital market to a lesser extent.

The significance of a systematic conditional risk, in particular a downside measure, may
also be useful in developing portfolio optimization methods in the context of sectoral and
company size investing.

5. Conclusion

This paper presents an analysis of conditional volatility exposure by modelling the returns
and volatility of companies listed on the WSE with the use of ARCH type models. The
analysis takes into account not only the classical framework, but also the downside aspect of
risk. The systematic measures of risk are the classical and downside betas obtained in the
market model, and the volatility betas, which assess the common impact of the conditional
variance specific for a given company, and such a variance of the market index as a
representative of the market portfolio.

In the vast majority of cases, the classical and downside betas, both return and conditional
volatility, are positive and statistically significant in the entire 10-year period. The downside
betas of both types are on average higher than their classical equivalents. The conventional
betas of both types are characterized by higher relative diversity. The risk measures discussed
here are also significantly varied as far as company size and sector of the economy are
concerned. The highest volatility exposure is observed for medium companies and companies
operating in the chemical and financial sectors, whereas the highest sensitivity to the risk of
changes in economic trends is observed for large companies and companies operating in the
fuel sector.

The cross-sectional analyses demonstrate that conditional volatility exposure is subject
to statistically significant pricing. The models describing the analysed relationships in the
context of a classical risk exposure explain asset pricing in the Polish capital market to a
greater extent than the models using downside measures.

As the analyses carried out indicate that the systematic measures of volatility exposure
are significant in the processes generating such measures, they may be helpful in creating
investment portfolios that include not only national but also international assets. The
calculation of volatility betas for various companies may be used to discover a common
sector-specific factor connecting companies that operate in various sectors.

REB 2015
Vol. 7, No. 1

15



REB 2015
Vol. 7, No. 1

16

‘ MARKOWSKI

References

Alles L., Murray L. 2013. Rewards for downside risk in Asian markets. Journal of Banking &
Finance 37, pp. 2501-25009.

Ang A., Chen J., Xing Y. 2006. Downside Risk. Review of Financial Studies, Vol. 19, No. 4,
pp. 1191-1239.

Artavanis N., Diacogiannis G., Mylonakis J. 2010. The D-CAPM: The Case of Britain and
France. International Journal of Economics and Finance, No. 3, August, pp. 25-38.

Bawa V.S., Lindenberg E.B. 1977. Capital Market Equilibrium in a Mean-Lower Partial
Moment Framework. Journal of Financial Economics, Vol. 5, pp. 189-200.

Bollerslev T., Engle R. 1993. Common Persistence in Conditional Variance. Econometrica
61, pp. 167-186.

Cai C. X., Faff R. W., Hillier D. J., McKenzie M. D. 2006. Modelling Return and Conditional
Volatility Exposures in Global Stock Markets. Review of Quantitative Finance and
Accounting, Vol. 27, No 2, pp. 125-142.

Chow KJV. Denning K.C. 1994. On Variance and Lower Partial Moment Betas the
Equivalence of Systematic Risk Measure. Journal of Business Finance & Accounting, 21(2)
March, pp. 231-241.

Estrada ). 2002. Systematic risk in emerging markets: the D-CAPM. Emerging Markets
Review 3, pp. 365-379.

Estrada J. 2007. Mean-semivariance behavior: Downside risk and capital asset pricing.
International Review of Economics & Finance 16, pp. 169-185.

Galagedera Don U. A. 2007. An Alternative Perspective on the Relationship between
Downside Beta and CAPM Beta. Emerging Markets Review, Vol. 8, No. 1, pp. 4-19.

Galagedera Don U. A. 2009. An Analytical Framework for Explaining Relative Performance
of CAPM Beta and Downside Beta. International Journal of Theoretical and Applied
Finance, Vol. 12, No. 3, pp. 341-358.

Hogan, W., Warren, ). 1974. Toward the development of an equilibrium capital-market
model based on semivariance. Journal of Financial Quantitative Analysis 9, pp. 1-11.
Kraus A., Litzenberger R. 1976. Skewness Preference and the Valuation of Risk Assets.

Journal of Finance, 31, pp. 1085-1100.

Li S., Galagedera Don U. A. 2008. Co-Movement of Conditional Volatility Matter in Asset
Pricing: Further Evidence in the Downside and Conventional Pricing Frameworks. The
Icfai Journal of Applied Finance, Vol. 14, No. 9, pp. 24-44.

Markowski L. 2013. Empirical tests of the CAPM and D-CAPM models at the Warsaw Stock
Exchange. Zastosowanie metod ilosciowych w zarzqdzaniu ryzykiem w dzialalnosci
inwestycyjnej, Red. nauk. A.S. Barczak, P. Tworek. Polskie Towarzystwo Ekonomiczne
Oddziat Katowice, Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach 2013, pp.
57-70.

Pedersen C., Hwang S. 2007. Does downside beta matter in asset pricing? Applied Financial
Economics 17, pp. 961-978.

Post T., van Vliet P. 2006. Downside risk and asset pricing. Journal of Banking and Finance
30, pp. 823-849.

Price K., Price B., Nantell T.). 1982. Variance and lower partial moment measures of
systematic risk: some analytical and empirical results. The Journal of Finance, XXXVII,
No 3, pp. 843-855.



MARKOWSKI

Rutkowska-Ziarko A. 2013. Fundamental portfolio construction based on semi-variance.
Olsztyn Economic Journal, Vol. 8, No. 2, pp. 151-162.

Veronesi P. 1999. Stock Market Overreaction to Bad News in Good Time: A Rational
Expectations Equilibrium Model. Review of Financial Studies, Vol. 12, No. 5, pp. 975-1007.

REB 2015
Vol. 7, No. 1

17



REB 2015

Vol. 7, No. 1 ‘ MARKOWSKI

Appendix

Table A1. Estimates of Classical and Downside Return Beta and Volatility Beta Coefficients

Asset Classical beta vof:altéiilsits)i/clilata Downside beta vo[l):tmpjisgta
B; ts B,, tﬂ B’ tgr B, te,

ABE 0.627° 13.71 1.750° 5.82 0.6282 9.59 1.9162 5.91
ACP 0.6822 20.03 0.997? 3.26 0.6982 15.00 1.2642 4.70
ACS 0.288¢° 7.40 1.119° 4.39 0.337° 6.05 1.149° 4.43
ACT 0.6042 10.53 2.469° 3.58 0.667° 8.12 2.542 3.51
AGO 0.809? 19.45 0.9452 5.45 0.894: 14.32 11292 5.86
ALC 0.458° 5.31 -0.104 -0.51 0.496° 4.25 -0.196 -0.86
ALM 0.598¢° 13.79 0.915° 3.94 0.7132 11.75 1.032° 4.24
AMB 0.663® 15.50 1.8332 5.79 0.751° 12.34 2.000° 6.07
AMC 0.7112 15.73 1.4992 3.99 0.771° 1317 17572 411
APL 0.936° 13.14 0.306 0.52 1.072° 9.83 0.692 1.09
APT 0.4952 1319 0.964° 5.51 0.541° 9.89 1.022° 5.73
18 AST 0.7152 12.39 1.6192 3.96 0.8142 10.21 1.832¢2 4.29
ATG 0.497° 8.79 1.443° 3.73 0.616° 8.60 1.472¢° 3.67
ATM 0.484° 8.73 1.237° 3.91 0.549° 6.48 1.295° 413
ATP 0.501° 8.93 0.780° 212 0.518° 6.87 1.016° 2.49
AWB 0.6152 10.81 -1.0112 -6.71 0.671® 9.31 -0.9882 -4.88
BAK 0.576° 11.72 0.327¢ 1.83 0.650° 9.67 0.409° 2.06
BCM 0.451° 9.90 0.628° 2.76 0.567? 8.77 0.6532 2.84
BDL 0.895° 9.47 -1.372 -3.74 1.0352 6.92 -1.301° -3.35
BDX 0.591° 16.66 0.654 3.06 0.581° 11.09 0.803° 3.55
BHW 0.810° 23.42 0.4742 3.11 0.793° 15.40 0.847° 4.68
BLI 0.720? 1.53 0.013 0.04 0.767° 9.18 0.166 0.43
BMP 0.5892 12.30 0.128 0.73 0.7062 10.88 0.124 0.64
BNP 0.290° 4.50 0.240 0.45 0.443¢ 4.04 0.244 0.46
BOS 0.308° 7.22 0.531° 2.79 0.388° 5.48 0.518° 2.83
BPH 0.7652 17.07 11432 2.64 0.820° 15.98 1.3612 3.29
BRE 11762 35.71 1.064° 8.55 11042 24.29 1.9342 9.51
BRS 0.9552 4.44 1.701° 2.58 0.958° 15.63 2.037° 210
BSK 0.7232 24.07 0.9252 6.87 0.692? 15.52 1.3372 8.74
BTM 0.7612 10.33 0.369 0.46 0.8292 9.65 0.610 0.65
BZW 1.048° 27.35 0.750° 6.20 0.9422 1773 1.739° 8.24
CAR 0.532° 12.03 1.7162 5.73 0.558° 8.07 1.8792 6.11
CcC 0.569° 14.96 0.7662 3.99 0.581° 10.35 0.894: 4.31
Ccl 0.462° 9.48 0.791° 3.52 0.447° 7.81 0.9322 3.66
CEZ 0.490° 11.37 1.000° 7.29 0.539° 7.88 11192 7.81
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CFL 0.5842 6.59 | -0.454° -2.04 0.755° 8.59 | -0.479° -2.08
CIE 0.742° 19.17 0.676° 3.41 0.846° 15.18 0.8032 372
CMP 0.3212 8.51 0.5352 3.54 0.331° 6.42 0.591° 3.58
CMR 0.658° 17.89 0.736° 4.44 0.728° 1413 0.892¢ 4.88
CNG 0.464° 10.48 0.248¢ 1.66 0.5842 8.83 0.246 1.50
coG 1.101° 12.22 0.360 0.32 1.206° 13.14 0.656 0.52
CPA 0.905° 8.07 1.087¢ 1.68 1.012° 13.61 1.366¢ 1.79
CsT 0.905¢ 19.27 0.986° 3.83 0.920a® 14.70 1.5792 4.71
DBC 0.4172 11.45 1.030° 4.77 0.518¢° 9.55 1.039° 4.75
DCR 0.449° 8.16 1.5652 4.00 0.6012 6.91 1.6022 3.93
DGA 0.707° 11.97 -0.261 -0.66 0.731° 9.39 -0.154 -0.33
DOM 0.702° 14.65 1.131° 5.17 0.816° 13.50 1.425° 5.18
DPL 0.9122 16.36 0.402 0.77 1.031° 14.50 1.011° 1.66
DUD 0.936° 14.05 2.434° 2.78 1.116a° 15.63 2.79° 2.98
EAT 0.633¢° 16.30 0.935° 5.25 0.656° 12.49 1.1742 5.42
ECD 0.729° 10.21 0.680 1.06 0.848¢° 9.48 0.669 0.98
ECH 0.8572 20.46 1.2512 6.24 0.8542 13.52 1.562a* 6.77
EEF 0.656° 11.26 0.949° 2.49 0.787° 8.85 1.079* 2.62
EFK 0.600° 127 1.496° 4.21 0.613¢ 8.16 1.708¢° 4.31
EFR 0.452° 7.67 2.336¢ 1.77 0.6512 7.29 2.356¢ 1.80
ELB 0.472° 12.00 0.094 0.76 0.527¢ 9.81 0.139 1.03
ELZ 0.332° 6.97 0.594¢ 1.81 0.543¢ 6.03 0.655¢ 1.82
EMC 0.452° 3.93 0.774° 2.06 0.5722 2.78 0.796° 216
EMP 0.416° 10.90 0.615° 3.25 0.452° 9.18 0.700° 3.47
ENP 0.6552 8.64 0.271 0.70 0.798° 7.48 0.182 0.52
EPL 0.596° 7.66 1141 1.38 0.666° 7.18 1.595¢ 1.71
EUR 0.5842 15.22 0.579° 3.62 0.590° 10.83 0.6942 3.93
FAM 0.696° 13.31 -0.122 -0.58 0.821° 11.88 0.007 0.03
FCL 0.491° 11.99 0.708° 511 0.573¢ 9.56 0.769° 5.29
FER 0.556° 8.99 1.343¢ 1.74 0.6812 7.30 1.318 1.57
FOT 0.5042 7.54 0.102 0.22 0.5152 6.36 0.115 0.23
FSG 0.609° 10.29 1.315° 2.96 0.684° 8.34 1.591° 3.36
FTE 0.432° 10.65 1.1992 5.05 0.460° 7.57 1.3172 511
GCN 0.924° 15.87 1.244° 2.42 1.163° 13.79 1.6332 2.63
GNT 1.277° 16.26 -1.309° -4.47 1.446° 14.92 -1.223° -3.56
GRI 0.688° 11.85 2.201° 2.94 0.844° 11.25 2.128¢° 292
GRJ 0.727¢ 1417 1.207° 4.65 0.790° 1213 1.3352 4.75
GRL 0.6322 14.54 1.3782 4.55 0.741° 12.31 1.425¢° 4.45
GTC 1.187¢ 28.13 1.0452 5.62 1.1742 20.45 1.8552 6.59
GTN 1.262° 32.35 0.308° 2.42 1.224° 22.84 1.0392 3.94
GzUu 1.1162 19.01 0.379 0.95 1.206° 18.44 1.076¢ 1.72
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HDR 0.393¢° 8.85 1.066° 3.74 0.447° 6.67 1.165° 3.98
HGN 0.976° 15.89 4.310 1.19 1.191° 13.21 4.793 1.37
HOP 0.391° 5.16 1.055¢ 1.86 0.5252 3.82 1.004° 2.06
HTM 0.835° 10.10 4.805° 3.04 0.982° 12.34 51862 3.59
HYP 0.432° 773 0.891° 2.47 0.569° 7.85 0.948° 2.75
IDM 1.1182 16.19 -1.271° -4.28 1.1572 12.43 -1.329° -3.93
INC 0.600° 9.39 0.142 0.53 0.722° 8.02 0.195 0.62
IND 0.344° 7.85 2.029° 6.41 0.400° 5.56 2.077° 6.57
INF 0.369° 6.13 0.313 1.02 0.444° 5.95 0.393 1.16
INK 0.604° 13.36 1.01° 3.62 0.658° 10.22 1.226° 3.78
IPL 0.462° 10.89 0.833° 3.04 0.491° 7.86 0.980° 3.55
IPO 0.310° 5.22 1.286° 2.96 0.452° 5.27 1.236° 2.85
IPX 0.987° 21.69 2.022° 313 1.079° 20.41 2.442° 3.76
JPR 0.789° 13.00 1178 0.85 0.994° 9.76 1.470 1.10
|TZ 0.729° 15.05 2.078° 5.27 0.771° 12.72 2.241° 5.41
KFL 0.391° 5.16 1.055¢ 1.86 0.525¢° 3.82 1.004° 2.06
KGH 1.508¢° 35.45 1.5742 5.34 1.522° 26.16 2.601° 8.56
KGN 0.425° 12.02 0.571° 3.22 0.4762 9.09 0.6532 3.58
KLR 0.522° 11.25 0.964° 3.42 0.616° 8.89 1.021° 3.51
KMP 0.481° 7.99 -0.516° -3.03 0.578° 6.71 -0.531° -2.41
KPX 1.0032 18.25 0.879° 3.00 1.001° 15.28 1.435° 4.21
KSW 0.441° 10.53 0.936° 4.64 0.5442 9.32 1.0242 472
KTY 0.666° 19.23 0.618¢° 4.78 0.694° 1413 0.762 4.79
KZS 0.741° 7.58 5.1742 2.88 0.836° 7.63 5.3912 291
LBW 0.860° 13.87 -0.042 -0.16 0.9752 12.39 0.102 0.29
LEN 0.602° 12.93 1.206° 4.24 0.664° 10.09 1.331° 4.41
LPP 0.545¢° 13.75 0.560° 3.68 0.579° 10.95 0.606° 417
LTS 11172 32.39 0.604° 4.25 11652 2414 0.9852 5.39
LTX 0.533¢ 10.81 3.442° 3.32 0.620° 9.14 3.691° 3.72
LzP 0.685¢ 10.25 0.027 0.04 0.757¢ 8.76 -0.045 -0.07
MClI 1.222° 23.66 2.259° 3.69 1.333¢ 21.09 2.971° 5.20
MCL 0.314° 7.35 1.718° 4.96 0.388° 6.43 1.738° 5.00
MDS 1.004° 7.29 5.531¢ 2.58 1.109° 6.52 4.920° 2.37
MIL 1.121° 26.19 1.431° 4.86 1.125° 20.90 1.9122 5.93
MIT 11130 17.83 -0.040 -0.07 11250 16.66 0.397 0.67
MNC 0.225° 7.00 0.009 0.07 0.227° 5.07 0.025 0.19
MNI 0.695° 15.96 0.097 0.38 0.773¢ 12.09 0.559¢ 1.65
MOL 0.846° 18.93 1.8332 6.13 0.873¢ 13.27 2.083 6.45
MSO 0.626° 15.15 0.894° 3.55 0.686° 11.97 1.044° 417
MSP 0.622° 13.39 -0.188 -1.18 0.631° 11.00 -0.070 -0.34
MSW 0.636° 11.81 -0.410° -2.90 0.718° 9.37 -0.341° -2.16
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MSX 1.277° 13.27 -0.817 -1.51 1.417° 9.67 -0.202 -0.24
MSz 1.022° 20.64 0.660° 2.59 1.1502 16.16 1.142° 3.23
MTL 0.543¢° 6.95 0.226 0.41 0.5752 6.32 0.248 0.42
MZA 0.408° 6.85 0.951° 1.97 0.5152 5.93 1.062° 1.98
NCT 0.642° 9.57 0.275 0.82 0.718° 8.40 0.259 0.78
NEM 0.5072 10.54 0.853° 2.52 0.6332 9.28 0.9232 2.66
NET 0.4842 15.40 0.395° 2.73 0.5142 11.01 0.432° 2.88
NEU 0.347¢ 9.84 0.839° 561 0.392° 8.15 0.841° 5.34
NVT 0.489° 6.96 1.650 1.56 0.552° 6.62 1.613 1.34
020 0.801° 10.55 -0.147 -0.33 0.9052 9.35 -0.065 -0.16
ODL 0.573¢ 7.01 1.885¢ 1.92 0.7562 7.91 2.048° 216
OPT 1.0342 16.10 1.912¢ 1.76 1.164° 13.42 2.501¢ 1.77
ORB 0.539° 13.01 1.241° 5.41 0.603® 9.89 1.301° 5.55
PBF 0.651° 8.65 2.2502 294 0.716° 6.67 2.237* 2.98
PBG 0.827° 1418 | -0.363° -3.71 0.877¢ 10.26 -0.310¢ -1.94
PCE 0.766° 16.23 0.9422 3.03 0.850° 12.98 1.125¢2 3.55
PEK 0.3862 8.29 0.419¢ 1.67 0.438° 6.28 0.526¢ 1.86
PEO 1.381° 46.11 0.490° 6.33 1.2932 30.01 1.6752 9.76
PEP 0.545¢° 1418 0.417 1.35 0.603® 10.90 0.595¢ 1.66
PGD 0.542 9.27 3.743¢ 4.87 0.574° 7.22 4.092° 5.10
PGF 0.612° 15.33 1.578° 5.61 0.667° 12.38 1.669° 511
PGM 0.3752 5.02 -1.046° -7.24 0.439° 3.73 -1.075¢° -6.87
PGN 0.790¢° 24.53 0.530¢° 4.97 0.788° 16.97 0.728° 5.48
PGS 0.2112 4.96 0.954¢ 4.54 0.225° 3.77 0.9152 4.32
PJP 0.529° 9.86 0.251 1.10 0.732° 9.06 0.266 117
PKN 1.290¢° 46.69 0.444° 5.94 1.286° 34.46 0.953¢ 7.31
PKO 1.247° 51.82 0.420° 6.72 1.2022 37.32 1.381° 10.28
PLA 0.592° 6.85 3.727¢ 1.69 0.696° 6.05 4.216¢ 1.65
PLX 0.419° 8.39 1.247¢ 2.94 0.553¢ 8.82 1.133¢° 2.66
PMG 0.291° 511 -0.486° -2.49 0.339° 4.39 -0.471° -2.39
PMP 0.637° 9.99 2.400° 2.95 0.8322 8.66 2.660° 3.12
PND 1.201° 13.02 1.971° 2.87 1.438° 8.39 2.2452 314
PPS 0.529° 8.33 0.919 0.93 0.569° 5.55 1.081 1.09
PPW 1.1132 17.83 -0.040 -0.07 1.245° 16.66 0.397 0.67
PRC 0.830° 15.33 -0.447¢ -1.78 0.9912 13.06 -0.202 -0.57
PRM 0.516° 11.52 1.046° 4.21 0.532° 8.88 1.145° 4.03
PRT 0.685¢ 10.25 0.027 0.04 0.757¢ 8.76 -0.044 -0.065
PUE 0.500° 10.76 1.3152 3.13 0.520° 8.42 1.425¢° 3.28
PXM 11732 9.31 -0.294¢ -1.76 1.258¢° 6.29 -0.106 -0.37
QsM 0.528° 12.09 0.970° 4.59 0.590° 8.92 1.0472 4.99
RDN 0.791° 13.08 0.236 0.68 0.958¢° 11.31 0.307 0.74
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RFK 0.734° 15.23 0.378 0.78 0.845a 11.03 0.496 1.04
RLP 0.718° 12.99 1.070° 3.29 0.802° 11.47 1.376° 3.84
RMK 0.561° 9.22 1.336° 3.15 0.643¢° 7.57 1.432° 3.26
RPC 0.497° 1018 1.988° 4.41 0.593¢ 8.85 2.0152 4.34
SFS 0.569° 8.37 0.139 0.34 0.720° 6.74 0.085 0.21
SGN 0.707° 17.44 1.085° 3.97 0.827° 16.32 1.282° 4.57
SKA 0.308° 7.79 1.231 2.95 0.354° 5.92 1.2752 3.01
SKT 1.280° 12.61 0.926 0.83 1.489° 15.87 0.493 0.74
SME 0.456° 8.28 1.704° 2.34 0.556° 7.00 1.835° 2.58
SNK 0.419° 10.10 0.801° 3.29 0.464° 7.22 0.749° 2.85
SNS 0.854° 20.82 1.425° 591 0.878° 15.38 1.8262 6.43
STF 0.681° 14.56 0.745° 2.03 0.747° 11.65 0.952° 2.27
STP 0.679° 16.35 0.595¢° 3.05 0.709° 1219 0.737¢ 3.57
STX 0.723° 12.26 2.390° 3.45 0.810° 11.38 2.966° 413
Suw 0.337¢ 7.30 0.551° 2.40 0.402° 6.14 0.619° 2.62
SWD 0.868° 12.28 0.394 1.23 0.990° 11.67 0.817¢ 1.93
TEL 0.301° 7.91 0.441° 2.64 0.359° 6.91 0.445¢° 2.71
22 TIM 0.545° 11.27 0.933¢ 1.69 0.659° 9.19 1.013¢ 1.89
TLX 0.278° 5.48 0.959° 3.71 0.382° 4.95 0.948° 3.73
TPS 0.745° 24.85 0.138 1.52 0.7342 17.01 0.264° 2.28
TRI 0.756° 10.48 1.107¢ 1.69 0.890° 9.34 1.578° 2.03
TUP 0.792° 12.52 -0.189 -0.30 0.920° 11.07 -0.052 -0.07
TVL 0.320° 4.59 1.081¢ 1.69 0.516° 5.09 0.885 1.41
TVN 0.998° 25.37 1.160° 5.36 0.9752 17.74 1.596° 7.04
Uz2K 0.488° 8.67 2.026° 6.31 0.609° 7.07 2.081° 6.26
uLm 0.579° 1012 0.559 1.35 0.682° 9.18 0.643 1.31
VRT 0.506° 10.48 0.839° 2.09 0.631° 9.09 1.001° 2.34
VST 0.726° 14.52 2153° 511 0.842° 11.26 2.291° 513
WAS 0.830° 13.87 0.005 0.02 0.934° 10.40 0.129 0.38
WDX 0.574° 10.46 0.465 1.41 0.694° 9.22 0.594¢ 1.68
WLB 0.634° 12.74 | -0.560° -2.08 0.673° 9.07 -0.551¢ -1.86
WST 0.143 1.52 3.352¢ 1.75 0.3252 2.30 4.743° 2.24
WWL 0.355° 10.32 0.964° 3.74 0.322° 6.27 1.037¢ 4.04
YWL 0.664° 11.25 0.445 1.22 0.772° 8.69 0.524 1.32
ZAP 0.557° 15.39 0.734° 4.82 0.593° 11.50 0.8312 4.95
ZKA 0.491° 10.26 1.127° 3.43 0.536° 7.47 1.051° 311
ZWC 0.180° 6.4 0.549° 513 0.203¢° 4.84 0.556° 4.96

Note: B, B, . classical return beta and conditional volatility beta; g, °, , downside return beta and condi-
tional volatility beta; t,denotes respective to the beta t statistics; a, b, c indicates significance re-
spectively at the 1%, 5%, 10% level.

Source: Author’s calculations



